代数式 题_代数式练习题
1.初一上册数学有理数计算题30道(至少有两种运算)附带过程及答案
2.六年级数学难题(练习题,附答案)
3.二元一次方程计算题200道!带答案!十分紧急!
4.初中数学二次根式题归纳及答案分析
5.三元一次方程组练习题
6.分式化简的基本方法
1、已知A,B是方程x^2+2x-5=0的两个实数根,
求(A^2+2AB+2A)(B^2+2AB+2B)的值.
由A,B是方程x^2+2x-5=0的两个实数根得:
AB=-5,A+B=-2
A^2+2AB+2A)(B^2+2AB+2B)
=AB(A+2B+2)(B+2A+2)
=-5(-2+B+2)(-2+A+2)
=-5AB
=25
2、1/2(x+y+z)方+1/2(x-y-z)(x-y+z)-z(x+y),其中x-y=6,xy=21.要详细步骤
化简得:
1/2(x+y+z)方+1/2(x-y-z)(x-y+z)-z(x+y)=
1/2[(x+y)方+2z(x+y)+z方]+1/2[(x-y)方-z方]-z(x+y)=
1/2(x+y)方+1/2(x-y)方=x方+y方
由x-y=6,xy=21得,x方+y方=(x-y)方+2xy=78
3、a^2-ab+2b^2=3 求2ab-2a^2-4b^2-7的值
2ab-2a^2-4b^2-7
=2(ab-a^2-2b^2)-7
=-2(a^2-ab+2b^2)-7
=(-2)*3-7
=-6-7=-13
4、若A=2x^2+3xy-2x-3,B=-x^2+xy+2,且3A+6B的值与x无关,求y的值
解:
3A+6B=6x^2+9xy-6x-9-6x^2+6xy+12
=15xy-6x+3
=x(15y-6)+3
5、9x+6x^2 -3(x-2/3x^2).其中x=-2
9x+6x? -3(x-2/3x?)
=9x+6x?-3x+2x?
=8x?+6x
=8×(-2)?+6×(-2)
=32-12
=20
6、1/4(-4x^2+2x-8)-(1/2x-1),其中x=1/2
1/4(-4x?+2x-8)-(1/2x-1)
=-x?+1/2x-2-1/2x+1
=-x?-1
=-(1/2)?-1
=-1/4-1
=-5/4
7、3x'y-[2x'y-(2xyz-x'z)-4x'z]-xyz,其中x=-2,y=-3,z=1,
:3x'y-[2x'y-(2xyz-x'z)-4x'z]-xyz
=3x'y-2x'y+2xyz-x'z+4x'z-xyz
=x'y-xyz+3x'z
=4*(-3)-2*3*1+3*4*1
=-12-6+12
=-6
8、(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2),其中a=-1,b=1
=5a^2-3b^2+a^2+b^2-5a^2-3b^2
=a^2-5b^2
=(-1)^2-5*1^2
=1-5
=-4
9、2(a^2b+ab^2)-2(a^2 b-1)-2ab^2 -2其中a=-2,b=2
=2a^2b+2ab^2-2a^2b+2-2ab^2-2
=0
10、(X-2分之1Y-1)(X-2分之1Y+1)-(X-2分之1Y-1)的平方
其中X=1.7,Y=3.9(先化简再求值)
[(X-2分之1Y)-1][(X+2分之1Y)+1]-(X-2分之1Y-1)平方
=(X+2分之1Y)平方-1-(X-2分之1Y)平方+2(X-2分之1Y)-1
=(X+2分之1Y)平方-(X-2分之1Y)平方+2(X-2分之1Y)-2
=2XY+2X-Y-2
=3.9*2.4+1.4
=10.76
化间求值: 下面的你自己求吧```
1、-9(x-2)-y(x-5)
(1)化简整个式子。
(2)当x=5时,求y的解。
2、5(9+a)×b-5(5+b)×a
(1)化简整个式子。
(2)当a=5/7时,求式子的值。
3、62g+62(g+b)-b
(1)化简整个式子。
(2)当g=5/7时,求b的解。
4、3(x+y)-5(4+x)+2y
(1)化简整个式子。
5、(x+y)(x-y)
(1)化简整个式子。
6、2ab+a×a-b
(1)化简整个式子。
7、5.6x+4(x+y)-y
(1)化简整个式子。
8、6.4(x+2.9)-y+2(x-y)
(1)化简整个式子。
9、(2.5+x)(5.2+y)
(1)化简整个式子。
10、9.77x-(5-a)x+2a
(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2),其中a=-1,b=1
=5a^2-3b^2+a^2+b^2-5a^2-3b^2
=a^2-5b^2
=(-1)^2-5*1^2
=1-5
=-4
2(a^2b+ab^2)-2(a^2 b-1)-2ab^2 -2其中a=-2,b=2
=2a^2b+2ab^2-2a^2b+2-2ab^2-2
=0
x+7-(-36+8^2)/2=[-(-8x)+7^4]/3*(8^2-6x)
(a-7)-(-98a)+7a=[(3.2*5a)2^5]/10
(89/2+5x)+35/6x=[3*(-9+5)+2^3]/5+7x
[3X+(-189+5^2)/3]/8=521/2
4y+[119*(-5^3y+8/7)-8/3]=22/11
(3X*189)+{5*6+[-5/8*(-65*8^3)]+9/2}
7(2x-1)-3(4x-1)=4(3x+2)-1
(5y+1)+ (1-y)= (9y+1)+ (1-3y)
[-6(-7^4*8)-4]=x+2
20%+(1-20%)(320-x)=320×40%
2(x-2)+2=x+1
2(x-2)-3(4x-1)=9(1-x)
11x+64-2x=100-9x
15-(8-5x)=7x+(4-3x)
3(x-7)-2[9-4(2-x)]=22
3/2[2/3(1/4x-1)-2]-x=2
2x+7^2=157
9x+6x? -3(x-2/3x?)
=9x+6x?-3x+2x?
=8x?+6x
=8×(-2)?+6×(-2)
=32-12
=20
1/4(-4x?+2x-8)-(1/2x-1)
=-x?+1/2x-2-1/2x+1
=-x?-1
=-(1/2)?-1
=-1/4-1
=-5/4
3.3ab-4ab+8ab-7ab+ab=______.
4.7x-(5x-5y)-y=______.
5.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.
6.-7x2+6x+13x2-4x-5x2=______.
7.2y+(-2y+5)-(3y+2)=______.
11.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.
12.2a-(3a-2b+2)+(3a-4b-1)=______.
13.-6x2-7x2+15x2-2x2=______.
14.2x-(x+3y)-(-x-y)-(x-y)=______.
16.2x+2y-[3x-2(x-y)]=______.
17.5-(1-x)-1-(x-1)=______.
18.( )+(4xy+7x2-y2)=10x2-xy.
19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.
21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.
22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.
23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.
25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.
26.-(2x2-y2)-[2y2-(x2+2xy)]=______.
27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.
28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.
29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.
30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).
31.3a-(2a-3b)+3(a-2b)-b=______.
32.化简代数式x-[y-2x-(x+y)]等于______.
33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.
34.3x-[y-(2x+y)]=______.
35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.
36.已知x≤y,x+y-|x-y|=______.
37.已知x<0,y<0,化简|x+y|-|5-x-y|=______.
38.4a2n-an-(3an-2a2n)=______.
39.若一个多项式加上-3x2y+2x2-3xy-4得
2x2y+3xy2-x2+2xy,
则这个多项式为______.
40.-5xm-xm-(-7xm)+(-3xm)=______.
41.当a=-1,b=-2时,
[a-(b-c)]-[-b-(-c-a)]=______.
43.当a=-1,b=1,c=-1时,
-[b-2(-5a)]-(-3b+5c)=______.
44.-2(3x+z)-(-6x)+(-5y+3z)=______.
45.-5an-an+1-(-7an+1)+(-3an)=______.
46.3a-(2a-4b-6c)+3(-2c+2b)=______.
48.9a2+[7a2-2a-(-a2+3a)]=______.
50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______.
(二)选择
[ ]
A.2;
B.-2;
C.-10;
D.-6.
52.下列各式中计算结果为-7x-5x2+6x3的是 [ ]
A.3x-(5x2+6x3-10x);
B.3x-(5x2+6x3+10x);
C.3x-(5x2-6x3+10x);
D.3x-(5x2-6x3-10x).
53.把(-x-y)+3(x+y)-5(x+y)合并同类项得 [ ]
A.(x-y)-2(x+y);
B.-3(x+y);
C.(-x-y)-2(x+y);
D.3(x+y).
54.2a-[3b-5a-(2a-7b)]等于 [ ]
A.-7a+10b;
B.5a+4b;
C.-a-4b;
D.9a-10b.
55.减去-3m等于5m2-3m-5的代数式是 [ ]
A.5(m2-1);
B.5m2-6m-5;
C.5(m2+1);
D.-(5m2+6m-5).
56.将多项式2ab-9a2-5ab-4a2中的同类项分别结合在一起,应为 [ ]
A.(9a2-4a2)+(-2ab-5ab);
B.(9a2+4a2)-(2ab-5ab);
C.(9a2-4a2)-(2ab+5ab);
D.(9a2-4a2)+(2ab-5ab).
57.当a=2,b=1时,-a2b+3ba2-(-2a2b)等于 [ ]
A.20;
B.24;
C.0;
D.16.
中,正确的选择是 [ ]
A.没有同类项;
B.(2)与(4)是同类项;
C.(2)与(5)是同类项;
D.(2)与(4)不是同类项.
59.若A和B均为五次多项式,则A-B一定是 [ ]
A.十次多项式;
B.零次多项式;
C.次数不高于五次的多项式;
D.次数低于五次的多项式.
60.-{[-(x+y)]}+{-[(x+y)]}等于 [ ]
A.0;
B.-2y;
C.x+y;
D.-2x-2y.
61.若A=3x2-5x+2,B=3x2-5x+6,则A与B的大小是
[ ]
A.A>B;
B.A=B;
C.A<B;
D.无法确定.
62.当m=-1时,-2m2-[-4m2+(-m2)]等于 [ ]
A.-7;
B.3;
C.1;
D.2.
63.当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于 [ ]
A.1;
B.9;
C.3;
D.5.
[ ]
65.-5an-an-(-7an)+(-3an)等于 [ ]
A.-16an;
B.-16;
C.-2an;
D.-2.
66.(5a-3b)-3(a2-2b)等于 [ ]
A.3a2+5a+3b;
B.2a2+3b;
C.2a3-b2;
D.-3a2+5a-5b.
67.x3-5x2-4x+9等于 [ ]
A.(x3-5x2)-(-4x+9);
B.x3-5x2-(4x+9);
C.-(-x3+5x2)-(4x-9);
D.x3+9-(5x2-4x).
[ ]
69.4x2y-5xy2的结果应为 [ ]
A.-x2y;
B.-1;
C.-x2y2;
D.以上答案都不对.
(三)化简
70.(4x2-8x+5)-(x3+3x2-6x+2).
72.(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2).
73.-{2a2b-[3abc-(4ab2-a2b)]}.
74.(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).
75.(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).
76.(3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).
77.(4a-2b-c)-5a-[8b-2c-(a+b)].
78.(2m-3n)-(3m-2n)+(5n+m).
79.(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).
80.xy-(2xy-3z)+(3xy-4z).
81.(-3x3+2x2-5x+1)-(5-6x-x2+x3).
83.3x-(2x-4y-6x)+3(-2z+2y).
84.(-x2+4+3x4-x3)-(x2+2x-x4-5).
85.若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.
86.已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B).
87.2m-{-3n+[-4m-(3m-n)]}.
88.5m2n+(-2m2n)+2mn2-(+m2n).
89.4(x-y+z)-2(x+y-z)-3(-x-y-z).
90.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).
92.2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2).
94.4x-2(x-3)-3[x-3(4-2x)+8].
(四)将下列各式先化简,再求值
97.已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b)2×(a-b)2的值.
98.已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.
99.求(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.
101.已知|x+1|+(y-2)2=0,求代数式5(2x-y)-3(x-4y)的值.
106.当P=a2+2ab+b2,Q=a2-2ab-b2时,求P-[Q-2P-(P-Q)].
107.求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3.
110.当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.
113.已知A=x3-5x2,B=x2-6x+3,求A-3(-2B).
(五)综合练习
115.去括号:{-[-(a+b)]}-{-[-(a-b)]}.
116.去括号:-[-(-x)-y]-[+(-y)-(+x)].
117.已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内.
118.计算下式,并把结果放在前面带“-”号的括号内:
(-7y2)+(-4y)-(-y2)-(+5y)+(-8y2)+(+3y).
119.去括号、合并同类项,将结果按x的升幂排列,并把后三项放在带有“-”号的括号内:
120.不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy)+(2y3-3y2).
121.把多项式4x2y-2xy2+4xy+6-x2y2+x3-y2的三次项放在前面带有“-”号的括号内,二次项放在前面带有“+”号的括号内,四次项和常数项放在前面带有“-”号的括号内.
122.把下列多项式的括号去掉,合并同类项,并将其各项放在前面带有“-”号的括号内,再求2x-2[3x-(5x2-2x+1)]-4x2的值,其中x=-1.
123.合并同类项:
7x-1.3z-4.7-3.2x-y+2.1z+5-0.1y.
124.合并同类项:5m2n+5mn2-mn+3m2n-6mn2-8mn.
126.去括号,合并同类项:
(1)(m+1)-(-n+m);
(2)4m-[5m-(2m-1)].
127.化简:2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.
128.化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.
129.计算:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).
130.化简:a3-(a2-a)+(a2-a+1)-(1-a4+a3).
131.将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4.
132.在括号内填上适当的项:[( )-9y+( )]+2y2+3y-4=11y2-( )+13.
133.在括号内填上适当的项:
(-x+y+z)(x+y-z)=[y-( )][y+( )].
134.在括号内填上适当的项:
(3x2+xy-7y2)-( )=y2-2xy-x2.
135.在括号内填上适当的项:
(1)x2-xy+y-1=x2-( );
(2)[( )+6x-7]-[4x2+( )-( )]=x2-2x+1.
136.计算4x2-3[x+4(1-x)-x2]-2(4x2-1)的值.
137.化简:
138.用竖式计算
(-x+5+2x4-6x3)-(3x4+2x2-3x3-7).
139.已知A=11x3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B).
140.已知A=x3-5x2,B=x3-11x+6,C=4x-3,求
(1)A-B-C;
(2)(A-B-C)-(A-B+C).
141.已知A=3x2-4x3,B=x3-5x2+2,计算
(1)A+B;
(2)B-A.
142.已知x<-4,化简|-x|+|x+4|-|x-4|.
146.求两代数式-1.56a+3.2a3-0.47,2.27a3-0.02a2+4.03a+0.53的差与6-0.15a+3.24a2+5.07a3的和.
-0.3,y=-0.2.
150.已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3xy-z2-8xz-2x2的值.
初一上册数学有理数计算题30道(至少有两种运算)附带过程及答案
3.3ab-4ab+8ab-7ab+ab=______.
4.7x-(5x-5y)-y=______.
5.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.
6.-7x2+6x+13x2-4x-5x2=______.
7.2y+(-2y+5)-(3y+2)=______.
11.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.
12.2a-(3a-2b+2)+(3a-4b-1)=______.
13.-6x2-7x2+15x2-2x2=______.
14.2x-(x+3y)-(-x-y)-(x-y)=______.
16.2x+2y-[3x-2(x-y)]=______.
17.5-(1-x)-1-(x-1)=______.
18.( )+(4xy+7x2-y2)=10x2-xy.
19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.
21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.
22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.
23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.
25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.
26.-(2x2-y2)-[2y2-(x2+2xy)]=______.
27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.
28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.
29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.
30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).
31.3a-(2a-3b)+3(a-2b)-b=______.
32.化简代数式x-[y-2x-(x+y)]等于______.
33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.
34.3x-[y-(2x+y)]=______.
35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.
36.已知x≤y,x+y-|x-y|=______.
37.已知x<0,y<0,化简|x+y|-|5-x-y|=______.
38.4a2n-an-(3an-2a2n)=______.
39.若一个多项式加上-3x2y+2x2-3xy-4得
2x2y+3xy2-x2+2xy,
则这个多项式为______.
40.-5xm-xm-(-7xm)+(-3xm)=______.
41.当a=-1,b=-2时,
[a-(b-c)]-[-b-(-c-a)]=______.
43.当a=-1,b=1,c=-1时,
-[b-2(-5a)]-(-3b+5c)=______.
44.-2(3x+z)-(-6x)+(-5y+3z)=______.
45.-5an-an+1-(-7an+1)+(-3an)=______.
46.3a-(2a-4b-6c)+3(-2c+2b)=______.
48.9a2+[7a2-2a-(-a2+3a)]=______.
50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______.
六年级数学难题(练习题,附答案)
一. 选择题(每小题3分,共30分)
1. 的绝对值是( )
A. B. C. D.
2. 当 时,代数式 的值是( )
A. 2 B. 0 C. 4 D. 1
3. 要使分式 有意义,则 的取值范围是( )
A. B. C. D.
4. 抛物线 与 轴的交点坐标是( )
A. B. C. D.
5. 如图所示,已知DE//BC,AD = 3, BD = 6,EC = 4,则AE长为( )
A. 2 B. 4 C. 1 D. 3
6. 用地砖铺地面,下列哪种正多边形地砖不能铺满地面
A. B.
C. D.
7. 已知抛物线 的图象与x轴有两个交点,则 的取值范围是( )
A. B. C. D.
8. 某商店举办有奖销售活动,办法如下:凡购满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖200个,那么买100元商品中一等奖的概率应是( )
A. B. C. D.
9. 如图所示,一块直角三角形板ABC( )的斜边AC与一个半径为1的圆轮子相靠,则CD等于( )
A. B. C. 1 D.
10. 如图所示,在平行四边形ABCD中,AC=4,BD=6,P是BD上任一点,过P作EF//AC,与平行四边形的两条边分别交于点E、F,设BP= ,EF= ,则能反映 与 之间关系的图象为
A. B.
C. D.
二. 填空题(每小题3分,共30分)
11. 计算: .
12. 若 ,则 .
13. 我国某城市有人口523800人,用科学计数法表示为 .
14. 已知 是方程 的两个实数根,则 .
15. 如果两圆半径分别是2和3,圆心距是1,则两圆位置关系是 .
16. 抗“非典”期间,个别商贩将原来每桶价格 元的过氧乙酸消毒液提高20%后出售,市政府及时采取措施,使每桶的价格在涨价后下降15%,那么现在每桶的价格是 元.
17. 如图所示, 为等腰直角三角形, ⊙A与BC相切,则图中阴影部分的面积为 .
18. 给出下列程序:
(输入 ) (立方) (×k) (+b) (输出)
且已知当输入的 值为1时,输出值为1;输入的 值为-1时,输出值为-3.则当输入的 值为 时,输出值为 .
19. 观察下列各式:
请你将猜想到规律用自然数 ,表示出来: .
20. 如图所示,四边形OABC中,OA=OB=OC, 是 的4倍,若 ,则 .
三. 解答题(共60分)
21. (8分)计算:
22. (8分)解方程:
23. (10分)为防水患,在漓江上游修筑了防洪堤,其横截面为一梯形(如图所示),堤的上底宽AD和堤高DF都是6米,其中
(1)求证:
(2)如果 ,求堤的下底BC的长。
24. (10分)如图所示,已知⊙ 与⊙ 相交于A、B两点,P是⊙ 上一点,PB的延长线交⊙ 于点C,PA交⊙ 于点D,CD的延长线交⊙ 于点N。
(1)过点A作AE//CN交⊙ 于点E,求证:PA=PE
(2)连结PN,若PB=4,BC=2,求PN的长。
25. (12分)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生。问:建造的这4道门是否符合安全规定?请说明理由。
26. (12分)已知如图,点A在 轴上,⊙A与 轴交于B、C两点,与 轴交于点D(0,3)和点E(0,-1)。
(1)求经过B、E、C三点的二次函数解析式;
(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与 轴交于点M,连结PA并延长与⊙A交于点Q,设Q点的纵坐标为 ,求 关于 的函数关系式,并观察图形写出自变量 的取值范围;
(3)在(2)条件下,当 时,求切线PM的解析式,并借助函数图像,求出(1)中抛物线在切线PM下方的点的横坐标 的取值范围。
四. 选做题(共10分)
27. 已知如图,在 中,AB=AC, ,BM=NM,BN=a,则点N到边BC的距离等于 。
28. 已知关于 的方程 的两个实数根为 、 ,且 。求证 。
答案
一.1.B 2. C 3. D 4. C 5. A 6. C 7. C 8. A 9.D 10.A
二. 11. 12. 13. 4.
15. 内切 16. 1.02a 17. 18. 19.
20.
三.解答题
21.
22.
23. (1)略 (2)21米
24. (1)证明,连结AB,
四边形AEPB是⊙ 的内接四边形,
在⊙ 中,
又 AE//CN,
(2)连结AN,四边形ANPB是⊙ 的内接四边形,
由(1)可知
又 。
又 在⊙ 中,由割线定理: ,
.
25.解:(1)设平均每分钟一道正门可以通过 名学生,一道侧门可以通过 名学生,由题意得
解得
答:平均每分钟一道正门可以通过学生120名,一道侧门可以通过学生80名。
(2)这栋楼最多有学生4×8×45=1440(名)。
拥挤时5分钟4道门能通过5×2(120+80)(1-20%)=1600(名)。
,
建造的4道门符合安全规定。
26. 解:
(1) 为⊙A的直径,
设经过B、E、C三点的抛物线的解析式为
则 ,解得
。
(2)过点P作PF⊥Y轴于F,过点Q作QN⊥Y轴于N。
,F点纵坐标为 ,
N点的纵坐标为
动切线PM经过第一、二、三象限,观察图形可得
关于 的函数关系式为
(3)当 时,Q点与C点重合,连结PB。
为⊙A的直径, ,即PB⊥ 轴。
将 代入
得
设切线PM与 轴交于点I,则AP⊥PI
在 与 中,
点坐标为(0,5),设切线PM的解析式为
点的坐标为 解得
切线PM的解析式为 设切线PM与抛物线 交于G、H两点,由 可得
因此,G、H的横坐标分别为 、 。根据图象可得抛物线在切线PM下方的点的横坐标 的取值范围是
27. 设
设为 ,作ND⊥BC于D,在 中,
在 中,
28. 只要证 即可。
法二: 的抛物线,当 时,
相应的 值为:
抛物线的顶点 必在 轴或 轴的下方。
而抛物线的开口向上,
抛物线与 轴的两交点必在1的两侧或同在1这个点。
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
1.[(7.1-5.6)×0.9-1.15] ÷2.5
2.5.4÷[2.6×(3.7-2.9)+0.62]
3.12×6÷(12-7.2)-6 (4)12×6÷7.2-6
4. 3/7 × 49/9 - 4/3
5. 8/9 × 15/36 + 1/27
6. 12× 5/6 – 2/9 ×3
7. 8× 5/4 + 1/4
8. 6÷ 3/8 – 3/8 ÷6
9. 4/7 × 5/9 + 3/7 × 5/9
10. 5/2 -( 3/2 + 4/5 )
11. 7/8 + ( 1/8 + 1/9 )
12. 9 × 5/6 + 5/6
13. 3/4 × 8/9 - 1/3
14. 7 × 5/49 + 3/14
15. 6 ×( 1/2 + 2/3 )
16. 8 × 4/5 + 8 × 11/5
17. 31 × 5/6 – 5/6
18. 9/7 - ( 2/7 – 10/21 )
19. 5/9 × 18 – 14 × 2/7
20. 4/5 × 25/16 + 2/3 × 3/4
21. 14 × 8/7 – 5/6 × 12/15
22. 17/32 – 3/4 × 9/24
23. 3 × 2/9 + 1/3
24. 5/7 × 3/25 + 3/7
25. 3/14 ×× 2/3 + 1/6
26. 1/5 × 2/3 + 5/6
27. 9/22 + 1/11 ÷ 1/2
28. 5/3 × 11/5 + 4/3
29. 45 × 2/3 + 1/3 × 15
30. 7/19 + 12/19 × 5/6
31. 1/4 + 3/4 ÷ 2/3
32. 8/7 × 21/16 + 1/2
33. 101 × 1/5 – 1/5 × 21
34.50+160÷40
35.120-144÷18+35
36.347+45×2-4160÷52
37(58+37)÷(64-9×5)
38.95÷(64-45)
39.178-145÷5×6+42
40.812-700÷(9+31×11)
41.85+14×(14+208÷26)
43.120-36×4÷18+35
44.(58+37)÷(64-9×5)
45.(6.8-6.8×0.55)÷8.5
46.0.12× 4.8÷0.12×4.8
47.(3.2×1.5+2.5)÷1.6
48.6-1.6÷4= 5.38+7.85-5.37=
49.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
50.6.5×(4.8-1.2×4)= 1.运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
2.一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
3.某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
4.甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
5.某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
6.学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
7.四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?
8.食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
9.果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
10.一块三角形地的面积是840平方米,底是140米,高是多少米?
11.李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?
12.3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
13.一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
14.小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
15.甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
16.甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?
18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?
1) 178-145÷5×6+42 420+580-64×21÷28
2) 89+456-78
3) 5%+. 3/7 × 49/9 - 4/3
4) 9 × 15/36 + 1/27
5) 2× 5/6 – 2/9 ×3
6) 3× 5/4 + 1/4
7) 94÷ 3/8 – 3/8 ÷6
8) 95/7 × 5/9 + 3/7 × 5/9
9) 6/2 -( 3/2 + 4/5 )
10) 8 + ( 1/8 + 1/9 )
11) 8 × 5/6 + 5/6
12) 1/4 × 8/9 - 1/3
13) 10 × 5/49 + 3/14
14) 1.5 ×( 1/2 + 2/3 )
15) 2/9 × 4/5 + 8 × 11/5
16) 3.1 × 5/6 – 5/6
17) 4/7 - ( 2/7 – 10/21 )
18) 19 × 18 – 14 × 2/7
19) 5 × 25/16 + 2/3 × 3/4
20) 4 × 8/7 – 5/6 × 12/15
21) 7/32 – 3/4 × 9/24
22) 1、 2/3÷1/2-1/4×2/5
23) 2-6/13÷9/26-2/3
24) 2/9+1/2÷4/5+3/8
25) 10÷5/9+1/6×4
26) 1/2×2/5+9/10÷9/20
27) 5/9×3/10+2/7÷2/5
28) 1/2+1/4×4/5-1/8
29) 3/4×5/7×4/3-1/2
30) 23-8/9×1/27÷1/27
31) 8×5/6+2/5÷4
32) 1/2+3/4×5/12×4/5
33) 8/9×3/4-3/8÷3/4
34) 5/8÷5/4+3/23÷9/11
35) 1.2×2.5+0.8×2.5
36) 8.9×1.25-0.9×1.25
37) 12.5×7.4×0.8
38) 9.9×6.4-(2.5+0.24)(27) 6.5×9.5+6.5×0.5
39) 0.35×1.6+0.35×3.4
40) 0.25×8.6×4
41) 6.72-3.28-1.72
42) 0.45+6.37+4.55
43) 5.4+6.9×3-(25-2.5)2×41846-620-380
44) 4.8×46+4.8×54
45) 0.8+0.8×2.5
46) 1.25×3.6×8×2.5-12.5×2.4
47) 28×12.5-12.5×20
48) 23.65-(3.07+3.65)
49)(4+0.4×0.25)8×7×1.25
50) 1.65×99+1.65
51) 27.85-(7.85+3.4)
52) 48×1.25+50×1.25×0.2×8
53) 7.8×9.9+0.78
54) (1010+309+4+681+6)×12
55) 3×9146×782×6×854
56) 15×7/8+6.1-0.60625
57) 3/7 × 49/9 - 4/3
58) 8/9 × 15/36 + 1/27
59) 12× 5/6 – 2/9 ×3
60) 8× 5/4 + 1/4
70) 6÷ 3/8 – 3/8 ÷6
71) 4/7 × 5/9 + 3/7 × 5/9
72) 5/2 -( 3/2 + 4/5 )
73) 7/8 + ( 1/8 + 1/9 )
74) 9 × 5/6 + 5/6
75) 3/4 × 8/9 - 1/3
76) 7 × 5/49 + 3/14
77) 6 ×( 1/2 + 2/3 )
78) 8 × 4/5 + 8 × 11/5
79) 31 × 5/6 – 5/6
80) 9/7 - ( 2/7 – 10/21 )
81) 5/9 × 18 – 14 × 2/7
82) 4/5 × 25/16 + 2/3 × 3/4
83) 14 × 8/7 – 5/6 × 12/15
84) 17/32 – 3/4 × 9/24
85) 3 × 2/9 + 1/3
86) 5/7 × 3/25 + 3/7
87) 3/14 ×× 2/3 + 1/6
88) 1/5 × 2/3 + 5/6
89) 9/22 + 1/11 ÷ 1/2
90) 5/3 × 11/5 + 4/3
91) 45 × 2/3 + 1/3 × 15
92) 7/19 + 12/19 × 5/6
93) 1/4 + 3/4 ÷ 2/3
94) 8/7 × 21/16 + 1/2
95) 101 × 1/5 – 1/5 × 21
96) 0+160÷40 (58+370)÷(64-45)
97) 1120-144÷18+35
98) 347+45×2-4160÷52
99)(58+37)÷(64-9×5)
100) 95÷(64-45)
二元一次方程计算题200道!带答案!十分紧急!
1、岁末商场打折出售服装,一种美尔雅西服按八折出售,能获得利润20%。由于成本降低,现按原定价的七五折出售,却能获得利润25%。那么现在的成本比原来降低了多少?
2、甲乙两人各加工一批零件,乙完成任务比甲完成任务少用2小时。如果甲先做150个,乙再开始生产,当乙完成任务时甲能超额90个。乙的工作效率是甲的五分之四,乙每小时做多少个?
3、有甲乙两堆小球,甲堆小球比乙堆多,而且甲堆球的个数在130-200之间。从甲堆拿出与乙堆同样多的球放入乙堆中,然后从乙堆拿出与甲堆的剩下同样多放到甲堆……挪动5次以后,甲乙两堆球一样多,那么甲堆原有小球多少个?
4、在一个长24分米,宽9分米,高8分米的水草中,注入4分米深的睡,然后放进一个棱长6分米的正方体铁块,则水面上升多少分米?
5、将直角三角形ABC中的角C折起,使得C点与A点重合,如果AB=3,BC=4,那么四边形的ABED的面积是多少(见下图 如果不清晰请保存到桌面 在看图)
6一件工程,甲队单独做要15天完成,乙队单独做要20天完成。两队合作要多少天完成?
7
一件工作,甲单独做6小时完成,乙单独做要4小时完成,丙单独做要3小时完成。三人合作要几小时完成?
8一项工程,甲独做9天完成。甲独做四天后,乙与甲合作。还要多少天才能完成?
9一项工程,甲乙合作10天完成。甲、乙合做8天后,乙又独做了5天才完成,若乙单独做这项工程,要多少天?
10六1班原有1/5的同学参加大扫除,后来又有2个同学主动参加,实际参加人数是未参加人数的1/3.原来有多少个同学参加大扫除?
11在一次知识竞赛中,竞赛试题共有25道,每道题都有4个答案,其中只有1个答案正确,要求学生把正确答案选出来,每道题选对得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中的得分不低于60分,那么他至少选对了多少道题?
12当 2x-y/5xy=2时,代数式2x-y/10xy的值是多少?代数式15xy/6x-3y的值是多少?
13当x+y=15,xy=-5/51时,求代数式6x+5xy+6y的值
14某商场的电视机原价为2500元,现以8折销售,如果想使降价前后的销售额都为10万元,那么销售量应增加多少合?
15一位经销商购进某产品的进价为1050元,按进价的150%标价,若他打算获得商品的利润率不低于20%,那么他最低可以打几折,请你帮他设计一下.
16玩“20点”游戏:从一副扑克牌(去掉大、小王)中任取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为21或-21,其中红色扑克牌代表负数,黑色扑克牌代表正数,J 、Q、K分别代表11.12.13,和你的同伴做这个游戏,并写出3组式子来
17一个数的三分之一比它的五分之二少8,这个数的四分之三是多少?
18每用户的用水量不超过10吨,每吨水费0.8元,如果超过10吨,超出部分每用吨水,水费在每吨0.8元的基础上加价50%,小红上个月用水18吨,水费多少元?
19商店出售大,中,小气球,大气球每个3元,中气球每个1.5元,小气球每个1元。张老师用120元共买了55个气球,其中买中气球的钱与买小气球的钱恰好一样多。问每种球各买了几个?
20某商场购进童装500套,每套进价50元,加价60%,作为售价出售.
1.若能全部售完,则可盈利多少元?
2.当童装售出80%后,由于季节变化,商店决定五折出售,又售出了15%,最后的5%是以四折出售,这样,商店在这笔生意中共盈利了多少元?
21扇形的面积公式s=nπrr/360
设圆的半径为r,这扇形的半径为2r
得到nπ2r2r/360=πrr/2
得到n=45°
22某班学生有48人,喜欢足球的有12人,喜欢篮球的有22人喜欢乒乓的有8人,其他的有6人,求出他们所占的百分比各是多少。
23袋子里面两个白球两个红球 不改变球的数量 怎么摸才能摸到红球的数量是六分之一
24一辆货车从甲地开往乙地,每小时行35千米,行了全程的40%后,一辆小汽车从乙地开往甲地,每小时行45千米,小汽车开出3小时后与货车相遇,甲乙两地的距离是多少千米.
25把一个棱长为8厘米的正方形切割成两个完全一样的小长方形。两个小长方形的表面积之和比原来正方体的表面积增加( )平方厘米,每个小长方体的体积是( )立方厘米。
初中数学二次根式题归纳及答案分析
二元一次方程组
1) 66x+17y=3967
25x+y=1200
答案:x=48 y=47
(2) 18x+23y=2303
74x-y=1998
答案:x=27 y=79
(3) 44x+90y=7796
44x+y=3476
答案:x=79 y=48
(4) 76x-66y=4082
30x-y=2940
答案:x=98 y=51
(5) 67x+54y=8546
71x-y=5680
答案:x=80 y=59
(6) 42x-95y=-1410
21x-y=1575
答案:x=75 y=48
(7) 47x-40y=853
34x-y=2006
答案:x=59 y=48
(8) 19x-32y=-1786
75x+y=4950
答案:x=66 y=95
(9) 97x+24y=7202
58x-y=2900
答案:x=50 y=98
(10) 42x+85y=6362
63x-y=1638
答案:x=26 y=62
(11) 85x-92y=-2518
27x-y=486
答案:x=18 y=44
(12) 79x+40y=2419
56x-y=1176
答案:x=21 y=19
(13) 80x-87y=2156
22x-y=880
答案:x=40 y=12
(14) 32x+62y=5134
57x+y=2850
答案:x=50 y=57
(15) 83x-49y=82
59x+y=2183
答案:x=37 y=61
(16) 91x+70y=5845
95x-y=4275
答案:x=45 y=25
(17) 29x+44y=5281
88x-y=3608
答案:x=41 y=93
(18) 25x-95y=-4355
40x-y=2000
答案:x=50 y=59
(19) 54x+68y=3284
78x+y=1404
答案:x=18 y=34
(20) 70x+13y=3520
52x+y=2132
三元一次方程组练习题
关于因式分解同步练习知识学习,下面的题目需要同学们认真完成哦。
因式分解同步练习(解答题)
解答题
9.把下列各式分解因式:
①a2+10a+25 ②m2-12mn+36n2
③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2
10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.
11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.
答案:
9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2
通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。
因式分解同步练习(填空题)
同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。
因式分解同步练习(填空题)
填空题
5.已知9x2-6xy+k是完全平方式,则k的值是________.
6.9a2+(________)+25b2=(3a-5b)2
7.-4x2+4xy+(_______)=-(_______).
8.已知a2+14a+49=25,则a的值是_________.
答案:
5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12
通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。
因式分解同步练习(选择题)
同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。
因式分解同步练习(选择题)
选择题
1.已知y2+my+16是完全平方式,则m的值是( )
A.8 B.4 C.±8 D.±4
2.下列多项式能用完全平方公式分解因式的是( )
A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1
3.下列各式属于正确分解因式的是( )
A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2
C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2
4.把x4-2x2y2+y4分解因式,结果是( )
A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2
答案:
1.C 2.D 3.B 4.D
以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。
整式的乘除与因式分解单元测试卷(填空题)
下面是对整式的乘除与因式分解单元测试卷中填空题的练习,希望同学们很好的完成。
填空题(每小题4分,共28分)
7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________
8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .
9.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示)
10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 _________ .
11.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.
(a+b)1=a+b;
(a+b)2=a2+2ab+b2;
(a+b)3=a3+3a2b+3ab2+b3;
(a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.
12.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)
第n年12345…
老芽率aa2a3a5a…
新芽率0aa2a3a…
总芽率a2a3a5a8a…
照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001).
13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为 _________ .
答案:
7.
考点:零指数幂;有理数的乘方。1923992
专题:计算题。
分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4;
(2)根据乘方运算法则和有理数运算顺序计算即可.
解答:解:(1)根据零指数的意义可知x﹣4≠0,
即x≠4;
(2)(2/3)2002×(1.5)2003÷(﹣1)2004=(2/3×3/2)2002×1.5÷1=1.5.
点评:主要考查的知识点有:零指数幂,负指数幂和平方的运算,负指数为正指数的倒数,任何非0数的0次幂等于1.
8.
考点:因式分解-分组分解法。1923992
分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2+b2﹣2ab正好符合完全平方公式,应考虑为一组.
解答:解:a2﹣1+b2﹣2ab
=(a2+b2﹣2ab)﹣1
=(a﹣b)2﹣1
=(a﹣b+1)(a﹣b﹣1).
故答案为:(a﹣b+1)(a﹣b﹣1).
点评:此题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组,要考虑分组后还能进行下一步分解.
9.
考点:列代数式。1923992
分析:主要考查读图,利用图中的信息得出包带的长分成3个部分:包带等于长的有2段,用2x表示,包带等于宽有4段,表示为4y,包带等于高的有6段,表示为6z,所以总长时这三部分的和.
解答:解:包带等于长的有2x,包带等于宽的有4y,包带等于高的有6z,所以总长为2x+4y+6z.
点评:解决问题的关键是读懂题意,找到所求的量的等量关系.
10.
考点:平方差公式。1923992
分析:将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.
解答:解:∵(2a+2b+1)(2a+2b﹣1)=63,
∴(2a+2b)2﹣12=63,
∴(2a+2b)2=64,
2a+2b=±8,
两边同时除以2得,a+b=±4.
点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.
11
考点:完全平方公式。1923992
专题:规律型。
分析:观察本题的规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可.
解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.
点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.
12
考点:规律型:数字的变化类。1923992
专题:图表型。
分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a,新芽数是13a,总芽数是34a,则比值为
21/34≈0.618.
解答:解:由表可知:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和,
所以第8年的老芽数是21a,新芽数是13a,总芽数是34a,
则比值为21/34≈0.618.
点评:根据表格中的数据发现新芽数和老芽数的规律,然后进行求解.本题的关键规律为:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.
13.
考点:整式的混合运算。1923992
分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可.
解答:解:∵(x+2)2﹣1=x2+4x+4﹣1,
∴a=4﹣1,
解得a=3.
故本题答案为:3.
点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键.
以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。
整式的乘除与因式分解单元测试卷(选择题)
下面是对整式的乘除与因式分解单元测试卷中选择题的练习,希望同学们很好的完成。
整式的乘除与因式分解单元测试卷
选择题(每小题4分,共24分)
1.(4分)下列计算正确的是( )
A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6
2.(4分)(x﹣a)(x2+ax+a2)的'计算结果是( )
A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a3
3.(4分)下面是某同学在一次检测中的计算摘录:
①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2
其中正确的个数有( )
A.1个B.2个C.3个D.4个
4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是( )
A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+1
5.(4分)下列分解因式正确的是( )
A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)
6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为( )
A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab
答案:
1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。1923992
分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;
B、应为a4÷a=a3,故本选项错误;
C、应为a3a2=a5,故本选项错误;
D、(﹣a2)3=﹣a6,正确.
故选D.
点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.
2.
考点:多项式乘多项式。1923992
分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可.
解答:解:(x﹣a)(x2+ax+a2),
=x3+ax2+a2x﹣ax2﹣a2x﹣a3,
=x3﹣a3.
故选B.
点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.
3.
考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992
分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.
解答:解:①3x3(﹣2x2)=﹣6x5,正确;
②4a3b÷(﹣2a2b)=﹣2a,正确;
③应为(a3)2=a6,故本选项错误;
④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,故本选项错误.
所以①②两项正确.
故选B.
点评:本题考查了单项式乘单项式,单项式除单项式,幂的乘方,同底数幂的除法,注意掌握各运算法则.
4
考点:完全平方公式。1923992
专题:计算题。
分析:首先找到它后面那个整数x+1,然后根据完全平方公式解答.
解答:解:x2是一个正整数的平方,它后面一个整数是x+1,
∴它后面一个整数的平方是:(x+1)2=x2+2x+1.
故选C.
点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.
5,
考点:因式分解-十字相乘法等;因式分解的意义。1923992
分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.
解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;
B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;
C、是整式的乘法,不是分解因式,故本选项错误;
D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.
故选B.
点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.
6
考点:因式分解-十字相乘法等;因式分解的意义。1923992
分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.
解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;
B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;
C、是整式的乘法,不是分解因式,故本选项错误;
D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.
故选B.
点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.
6.
考点:列代数式。1923992
专题:应用题。
分析:可绿化部分的面积为=S长方形ABCD﹣S矩形LMPQ﹣S?RSTK+S重合部分.
解答:解:∵长方形的面积为ab,矩形道路LMPQ面积为bc,平行四边形道路RSTK面积为ac,矩形和平行四边形重合部分面积为c2.
∴可绿化部分的面积为ab﹣bc﹣ac+c2.
故选C.
点评:此题要注意的是路面重合的部分是面积为c2的平行四边形.
用字母表示数时,要注意写法:
①在代数式中出现的乘号,通常简写做“”或者省略不写,数字与数字相乘一般仍用“×”号;
②在代数式中出现除法运算时,一般按照分数的写法来写;
③数字通常写在字母的前面;
④带分数的要写成假分数的形式.
以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。
分式化简的基本方法
1.汽车在平路上每小时行30公里,上坡时每小时行28公里,下坡时每小时行35公里,现在行驶142公里的路程用去4小时三十分钟,回来使用4小时42分钟,问这段平路有多少公里?去时上下坡路各有多少公里?
解:
去时上坡x平路y下坡z
x+y+z=142 x/28+y/30+z/35=4.5 z/28+y/30+x/35=4.7
答案:x=42 y=30 z=70
2.某校初中三个年级一共有651人,初二的学生数比初三学生数多10%,初一的学生数比初二的学生数多5%。求三个年级各有多少人?
解:
初一:x 初二:y 初三:z
x+y+z=651 y=1.1z x=1.05y
答案:x=231 y=220 z=200
3.x+y=10
2x-3y+2z=5
x+2y-z=3
解:
x+y=10 ----(1)
2x-3y+2z=5 ----(2)
x+2y-z=3----(3)
(3)*2+(2)得
4x+y=11----(4)
(4)-(1)得
3x=1
x=1/3
将x=1/3代入(1),解得
y=29/3
将x=1/3,y=29/3代入(3)解得
z=50/3
4.某校初中三个年级共有651人,初二的学生数比初三的学生数多10%,初一的学生数比初二的学生数多5%,求这三个年级各有多少人?
解:
解设初1 2 3人数分别为X Y Z
X+Y+Z=651
Y=110%Z
X=105%Y
(解的过程中一定要换成Z来运算)
231/200 Z + 220/200 Z +200/200 Z=651
Z=200 Y=220 X=231
5.在代数式ax的平方+bx+c里,当x=1,2,-3时代数式的值分别是0,3,28,则这个代数式是?
解:
根据题意得到方程组:
a+b+c=0 方程1
4a+2b+c=3 方程2
9a-3b+c=28 方程3
方程2-方程1,得:
3a+b=3
方程3-方程1,得:
5a-5b=25,即:a-b=5
得到新方程组:
3a+b=3
a-b=5
解方程组得:
a=2
b=-3
把a=2,b=-3代入原方程得:c=1
所以原方程组解为:a=2,b=-3,c=1
6。在等式y=a*x的平方+bx+c中,当x=1时,y=-2;当x=-1时,y=20;当x=3/2与x=1/3时,y的值相等,求a,b,c的值
解:当x=1时,y=-2;当x=-1时,y=20分别列出方程1.2
a+b+c=-2 .............1
a-b+c=20 .............2
a+b=0 .............3
所以b=-11 a=11 c=-2
7.36块砖,36人搬,男搬4女搬3,两个小孩搬一块。问男人,女人,小孩各多少人?
解:
设男的有a人,女的有b人,小孩有c人,依题意,列方程组得
4a+3b+0.5c=36,
a+b+c=36.
求这个方程的整数解,
消去c,得7a+5b=36,
7a只能取7,14,21,28,
5b只能取5,10,15,20,25,
这些数中,只有21+15=36,没有其它的情况了,
此时a=3,b=3,c=30.
即男3人,女3人,小孩30人.
8.一个三位数,个位、百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位、十位的数字大2,个位十位百位上数字的和是14,求这个三位数
解:
设个位数字 = x,十位数字 = y,百位数字 = z
有:x + z = y……………………(1)
7z = x + y + 2……………………(2)
x + y + z =14……………………(3)
解这个方程组,考察(2),有:
x + y = 7z - 2
代入(3),有
8z = 16
所以:z = 2
依次解得:y = 7 , x = 5
这个三位数= 275
9.设y+z/x=x+y/z=x+z/y=k,求k?
解:
Y+Z=XK
X+Y=ZK
Z+X=YK
2(X+Y+Z)=K(X+Y+Z)
K=2
10.用一百块钱买一百只鸡,公鸡5块一只.母鸡三块一只.小鸡一块三只.问公鸡.母鸡.小鸡各多少只?
解:解:设公鸡x只,母鸡y只,小鸡z只
则依题意可得
x+y+z=100
5x+3y+z/3=100
化减后得
7x+4y=100
观察等式可知25-7x/4必须为整数
可得x为4,8,12
若x=4,则y=18,则z=78
若x=8,则y=11,则z=81
若x=12,则y=4,则z=84
二元一次方程组复习练习题
一、填空题
1、关于X的方程 ,当 __________时,是一元一次方程; 当 ___________时,它是二元一次方程。
2、已知 ,用 表示 的式子是___________;用 表示 的式子是___________。当 时 ___________;写出它的2组正整数解______________。
3、若方程 2x + y = 是二元一次方程,则mn= 。
4、已知 与 有相同的解,则 = __ , = 。
5、已知 ,那么 的值是 。
6、 如果 那么 _______。
7、若(x—y)2+|5x—7y-2|=0,则x=________,y=__________ 。
8、已知y=kx+b,如果x=4时,y=15;x=7时,y=24,则k= ;b= .
9、已知 是方程 的一个解,则 。
10、二元一次方程4x+y=20 的正整数解是______________________。
11、从1分、2分、5分的硬币中取出5分钱,共同__________种不同的取法(不论顺序)。
12、方程组 的解是_____________________。
13、如果二元一次方程组 的解是 ,那么a+b=_________。
14、方程组 的解是
15、已知6x-3y=16,并且5x+3y=6,则4x-3y的值为 。
16、若 是关于 、 的方程 的一个解,且 ,则 = 。
17、已知等腰三角形一腰上的中线将它的周长分为63和36两部分,则它的腰长是_________。底边长为___________。
18、已知点A(-y-15,-15-2x),点B(3x,9y)关于原点对称,则x的值是______,y的值是_________。
二、选择题。
1、在方程组 、 、 、 、 、 中,是二元一次方程组的有( )
A、2个 B、3个 C、4个 D、5个
2、二元一次方程组 的解是( )
A. B. C. D.
3、三个二元一次方程2x+5y—6=0,3x—2y—9=0,y=kx—9有公共解的条件是k=( )
A.4 B.3 C.2 D.1
4、如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )
A. 400 cm2 B. 500 cm2 C. 600 cm2 D. 675 cm2
5、一杯可乐售价1.8元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于( )
(A)0.6元 (B)0.5元 (C)0.45元 (D)0.3元
6、已知 是方程组 的解,则 、 间的关系是( )
A、 B、 C、 D、
7、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是( )
A B C D
8、设A、B两镇相距 千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为 千米/小时、 千米/小时,①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米。求 、 、 。根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( )
A、 B、 C、 D、
三、解答题。
1、在y= 中,当 时y的值是 , 时y的值是 , 时y的值是 ,求 的值,并求 时y的值。
2、有三把楼梯,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升的高度是一致的。每把楼梯的扶杆长(即梯长)、顶档宽、底档宽如图所示,并把横档与扶杆榫合处称作联结点(如点A)。
(1) 通过计算,补充填写下表:
楼梯
种类 两扶杆总长(米) 横档总长(米) 联结点数(个)
五步梯 4 2.0 10
七步梯
九步梯
(2) 一把楼梯的成本由材料费和加工费组成,假定加工费以每个个联结点1元计算,而材料费中扶杆的单价与横档的单价不相等(材料损耗及其它因素忽略不计)。现已知一把五步梯、七步梯的成本分别是26元、36元,试求出一把九步梯的成本。
3、解下列方程组
(1) ⑵
4、甲,乙联赛中,某足球队按足协的计分规则与本队奖励方案如下表.
胜一场 平一场 负一场
积分 3 1 0
奖金(元/人) 1500 700 0
当比赛进行到第12轮结束时,该队负3场,共积19分.
问:(1)该队胜,平各几场?(2)若每赛一场,每名参赛队员均得出场费500元,试求该队每名队员在12轮比赛结束后总收入。
参考答案如下:
解:(1)七步梯、九步梯的扶杆长分别是5米、6米;横档总长分别是3.5米、3.5米(各1分);联结点个数分别是14个、18个.
(2)设扶杆单价为x元/米,横档单价为y元/米。依题意得:
即 ,解得 。 故九步梯的成本为6×3+5.4×2+1×18=46.8(元) (9/).
答:一把九步梯的成本为46.8元。
回答者: 452491860 - 试用期 一级 8-21 11:08
...有些麻烦
回答者: bumin0312 - 初学弟子 一级 8-23 20:54
1.二元一次方程4x-3y=12,当x=0,1,2,3时,y=______.
2.在x+3y=3中,若用x表示y,则y=______,用y表示x,则x=______.
4.把方程3(x+5)=5(y-1)+3化成二元一次方程的一般形式为______.
(1)方程y=2x-3的解有______;
(2)方程3x+2y=1的解有______;
(3)方程y=2x-3与3x+2y=1的公共解是______.
9.方程x+y=3有______组解,有______组正整数解,它们是______.
11.已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2.当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程.
12.对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=______;当y=0时,则x=______.
13.方程2x+y=5的正整数解是______.
14.若(4x-3)2+|2y+1|=0,则x+2=______.
的解.
当k为______时,方程组没有解.
______.
(二)选择
24.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则[ ]
A.y=5x-3;
B.y=-x-3;
D.y=-5x-3.
[ ]
26.与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是[ ]
A.10x+2y=4;
B.4x-y=7;
C.20x-4y=3;
D.15x-3y=6.
[ ]
A.m=9;
B.m=6;
C.m=-6;
D.m=-9.
28.若5x2ym与4xn+m-1y是同类项,则m2-n的值为 [ ]
A.1;
B.-1;
C.-3;
D.以上答案都不对.
29.方程2x+y=9在正整数范围内的解有[ ]
A.1个;
B.2个;
C.3个;
D.4个.
[ ]
A.4;
B.2;
C.-4;
D.以上答案都不对.
二元一次方程组?综合创新练习题
一、综合题
Z,3,二
Z,3,二
3.已知4ax+yb2与-a3by是同类项求2x-y的值.
Z,3,二
4.若|x-2|+(2x-3y+5)2=0,求x和y的值.
N,3,三
5.若方程2x2m+3+3y5n-4=7是x,y的二元一次方程组,求m2+n的值.
Z,3,二
二、创新题
1.已知x和y互为相反数,且(x+y+4)(x-y)=4,求x和y的值.
N,4,三
2.求方程x+2y=7在自然数范围内的解.
N,4,三
三、中考题
(山东,95,3分)下列结论正确的是
[ ]
参考答案及点拨
一、1.所考知识点:方程组的解及求代数式的值.
∴ 2m+3n=2×2+3(-3)=4-9=-5.
2.所考知识点:方程的解及解一元一次方程.
解:把 x=-3,y=-2代入方程,得 2(-3)-4(-2)+2a=3解关
点拨:以上两题考察的知识点类似,已知方程的解时,只要把这组数代入方程或方程组就可求出方程中其他字母的值.
3.所考知识点:同类项及解方程
点拨:根据同类项的定义知,相同字母的指数相同,故可列出方程,从而求解.
4.所考知识点:非负数的性质及解简单的二元一次方程组.
点拨:因|x-2|≥0,(2x-3y+5)2≥0,所以,当它们的和为零,这两个数都须是零,即x-2=0,2x-3y+5=0.
5.所考知识点:二元一次方程的定义.
解:由题意知
点拨:从二元一次方程的定义知,未知项的指数为 1,由此得到 2m+3=1, 5n-4=1.
二、1.所考知识点:相反数的意义及解简单的二元一次方程组.
解:由题意,得x+y=0,
又∵(x+y+4)(x-y)=4
∴ 4(x-y)=4
即x-y=1
2.所考知识点:二元一次方程的自然数解.
解:把方程x+2y=7变形,得x=7-2y
令y=1,2,3,4……,则x=5,3,1,-1……
点拨:二元一次方程的自然数解,就是未知数的值,都是自然数,首先将方程变形,用含一个字母的代数式表示另一个字母,再根据题目的特点求解.
三、所考知识点:二元一次方程组解的定义.
解:D
点拨:由二元一次方程组的定义知道,二元一次方程组的解,是方程组中每个二元一次方程组的解,故选D.
一、整体法
分析:因为(4x2+6x+9)(2x-3)=8x3-27.故把4x2+6x+9看做一个整体,
分析:由已知等式是不能求a,b的值的,可以考虑将求值式变形,将式子用条件式中的表示,便可做整体代入求值.
整体法解题时,其变形,计算不局限在某一个字母或某一项上,而是把某一个代数式看做一个整体参与变形,计算,从而使解题简化.
练习题:? 1.已知x+y=5,xy=3.求下列代数式的值.
二、因式分解法
说明:计算时在两个分式中提取公因式并约简,将复杂的分式"化整为零,分别突破,从而使解题得
简化.
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。